Matrix perturbation inequalities, such as Weyl's theorem (concerning the singular values) and the Davis-Kahan theorem (concerning the singular vectors), play essential roles in quantitative science; in particular, these bounds have found application in data analysis as well as related areas of engineering and computer science. In many situations, the perturbation is assumed to be random, and the original matrix has certain structural properties (such as having low rank). We show that, in this scenario, classical perturbation results, such as Weyl and Davis-Kahan, can be improved significantly. We believe many of our new bounds are close to optimal and also discuss some applications.


翻译:矩阵扰动不平等,如Weyl的理论(关于单值)和Davis-Kahan理论(关于单向矢量)在定量科学中发挥着至关重要的作用;特别是,这些界限在数据分析及相关工程和计算机科学领域找到了应用。在许多情况下,扰动被认为是随机的,原始矩阵具有某些结构属性(如低级 ) 。 我们显示,在这种情况下,典型的扰动结果(如Weyl和Davis-Kahan)可以显著改善。 我们相信,我们的许多新界限接近于最佳,并且也讨论一些应用。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员