In this technical report, we present our solution for the Baidu KDD Cup 2022 Spatial Dynamic Wind Power Forecasting Challenge. Wind power is a rapidly growing source of clean energy. Accurate wind power forecasting is essential for grid stability and the security of supply. Therefore, organizers provide a wind power dataset containing historical data from 134 wind turbines and launch the Baidu KDD Cup 2022 to examine the limitations of current methods for wind power forecasting. The average of RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) is used as the evaluation score. We adopt two spatial-temporal graph neural network models, i.e., AGCRN and MTGNN, as our basic models. We train AGCRN by 5-fold cross-validation and additionally train MTGNN directly on the training and validation sets. Finally, we ensemble the two models based on the loss values of the validation set as our final submission. Using our method, our team \team achieves -45.36026 on the test set. We release our codes on Github (https://github.com/BUAABIGSCity/KDDCUP2022) for reproduction.


翻译:在这份技术报告中,我们为Baidu KDD Cup 2022空间动态风能预测挑战提出解决方案。风力是快速增长的清洁能源来源。准确的风力预报对于电网稳定和供应安全至关重要。因此,组织者提供了包含134个风力涡轮机历史数据的风力数据集,并启动了Baidu KDDT Cup 2022,以审查当前风力预报方法的局限性。RUSE(模拟平方错误)和MAE(海洋绝对错误)的平均值被用作评估分数。我们采用了两种空间时空图神经网络模型,即AGCRN和MTGNNN,作为我们的基本模型。我们用5倍的交叉校准和直接培训MTGNNNT。最后,我们用两种基于验证系统损失价值的模型汇编作为我们最后的呈文。使用我们的方法,我们的团队在测试集上实现了-45.36026。我们发布了我们关于Github(http://GIBA/DGAB22)的代码(http://KDBU/AB.

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
35+阅读 · 2021年1月27日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员