In this technical report, we present our solution for the Baidu KDD Cup 2022 Spatial Dynamic Wind Power Forecasting Challenge. Wind power is a rapidly growing source of clean energy. Accurate wind power forecasting is essential for grid stability and the security of supply. Therefore, organizers provide a wind power dataset containing historical data from 134 wind turbines and launch the Baidu KDD Cup 2022 to examine the limitations of current methods for wind power forecasting. The average of RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) is used as the evaluation score. We adopt two spatial-temporal graph neural network models, i.e., AGCRN and MTGNN, as our basic models. We train AGCRN by 5-fold cross-validation and additionally train MTGNN directly on the training and validation sets. Finally, we ensemble the two models based on the loss values of the validation set as our final submission. Using our method, our team \team achieves -45.36026 on the test set. We release our codes on Github (https://github.com/BUAABIGSCity/KDDCUP2022) for reproduction.
翻译:在这份技术报告中,我们为Baidu KDD Cup 2022空间动态风能预测挑战提出解决方案。风力是快速增长的清洁能源来源。准确的风力预报对于电网稳定和供应安全至关重要。因此,组织者提供了包含134个风力涡轮机历史数据的风力数据集,并启动了Baidu KDDT Cup 2022,以审查当前风力预报方法的局限性。RUSE(模拟平方错误)和MAE(海洋绝对错误)的平均值被用作评估分数。我们采用了两种空间时空图神经网络模型,即AGCRN和MTGNNN,作为我们的基本模型。我们用5倍的交叉校准和直接培训MTGNNNT。最后,我们用两种基于验证系统损失价值的模型汇编作为我们最后的呈文。使用我们的方法,我们的团队在测试集上实现了-45.36026。我们发布了我们关于Github(http://GIBA/DGAB22)的代码(http://KDBU/AB.