Simulators offer the possibility of safe, low-cost development of self-driving systems. However, current driving simulators exhibit na\"ive behavior models for background traffic. Hand-tuned scenarios are typically added during simulation to induce safety-critical situations. An alternative approach is to adversarially perturb the background traffic trajectories. In this paper, we study this approach to safety-critical driving scenario generation using the CARLA simulator. We use a kinematic bicycle model as a proxy to the simulator's true dynamics and observe that gradients through this proxy model are sufficient for optimizing the background traffic trajectories. Based on this finding, we propose KING, which generates safety-critical driving scenarios with a 20% higher success rate than black-box optimization. By solving the scenarios generated by KING using a privileged rule-based expert algorithm, we obtain training data for an imitation learning policy. After fine-tuning on this new data, we show that the policy becomes better at avoiding collisions. Importantly, our generated data leads to reduced collisions on both held-out scenarios generated via KING as well as traditional hand-crafted scenarios, demonstrating improved robustness.
翻译:模拟器提供了安全、低成本开发自驾驶系统的可能性。 然而, 目前驾驶模拟器模拟器为背景交通展示了“ 行为模型” 。 模拟时通常会增加手动调制情景, 以诱导安全危急情况。 另一种办法是, 对抗性干扰背景交通轨迹。 在本文中, 我们用 CARLA 模拟器来研究安全临界驾驶情景生成方法 。 我们使用运动式自行车模型作为模拟器真实动态的替代, 并观察到通过这个代理模型的梯度足以优化背景交通轨迹。 基于这一发现, 我们建议 KING, 它产生安全危急的驾驶情景, 其成功率比黑箱优化率高20% 。 通过使用特许的基于规则的专家算法, 我们获得模拟学习政策的培训数据。 在对这一新数据进行微调后, 我们显示该政策在避免碰撞方面变得更好。 Jine, 我们生成的数据会降低通过使用传统手法展示的稳健度, 导致两种持式情景的碰撞。