In this contribution we use an ensemble deep-learning method for combining the prediction of two individual one-stage detectors (i.e., YOLOv4 and Yolact) with the aim to detect artefacts in endoscopic images. This ensemble strategy enabled us to improve the robustness of the individual models without harming their real-time computation capabilities. We demonstrated the effectiveness of our approach by training and testing the two individual models and various ensemble configurations on the "Endoscopic Artifact Detection Challenge" dataset. Extensive experiments show the superiority, in terms of mean average precision, of the ensemble approach over the individual models and previous works in the state of the art.
翻译:在这一贡献中,我们使用一套共同的深层次学习方法,将两种单级一级探测器(即YOLOv4和Yolact)的预测结合起来,目的是在内皮图象中探测人工制品。这种共同的战略使我们能够提高个体模型的稳健性,而不会损害其实时计算能力。我们通过培训和测试两种个体模型和关于“Endoscopic Artifact 侦测挑战”数据集的各种组合,展示了我们的方法的有效性。广泛的实验显示,在平均精度方面,共性方法优于单个模型和以往的工艺。