Event-triggered model predictive control (eMPC) is a popular optimal control method with an aim to alleviate the computation and/or communication burden of MPC. However, it generally requires priori knowledge of the closed-loop system behavior along with the communication characteristics for designing the event-trigger policy. This paper attempts to solve this challenge by proposing an efficient eMPC framework and demonstrate successful implementation of this framework on the autonomous vehicle path following. First of all, a model-free reinforcement learning (RL) agent is used to learn the optimal event-trigger policy without the need for a complete dynamical system and communication knowledge in this framework. Furthermore, techniques including prioritized experience replay (PER) buffer and long-short term memory (LSTM) are employed to foster exploration and improve training efficiency. In this paper, we use the proposed framework with three deep RL algorithms, i.e., Double Q-learning (DDQN), Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC), to solve this problem. Experimental results show that all three deep RL-based eMPC (deep-RL-eMPC) can achieve better evaluation performance than the conventional threshold-based and previous linear Q-based approach in the autonomous path following. In particular, PPO-eMPC with LSTM and DDQN-eMPC with PER and LSTM obtains a superior balance between the closed-loop control performance and event-trigger frequency. The associated code is open-sourced and available at: https://github.com/DangFengying/RL-based-event-triggered-MPC.


翻译:事件触发模型预测控制(eMPC)是一种受欢迎的最佳控制方法,目的是减轻MPC的计算和(或)通信负担。然而,它通常要求事先了解闭环系统的行为以及设计事件触发政策的通信特点。本文试图通过提出高效的EMPC框架来解决这一挑战,并展示在自主车辆路径上成功实施这一框架。首先,使用不设模型的强化学习(RL)代理器学习最佳事件触发政策,而不需要在这一框架中建立完整的动态系统和通信知识。此外,还采用包括优先经验重现(PER)缓冲和长短术语存储(LSTM)在内的技术来促进探索和提高培训效率。在本文件中,我们使用拟议的框架,在前三次深度的 RLL算算法(DQN)、基于Proximal的政策(PPO)和基于软化 Act- Acrew-C 的代码化(SAC)中,在基于 RMR-L-LMP-C 和基于常规端点的 EMP-C 中,所有三种深度的LMD-C-S-S-S-S-S-S-S-C-Silental-C-C-C-Eral-C-S-S-S-S-S-ELmess-S-Eral-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员