This work provides closed-form solutions and minimum achievable errors for a large class of low-rank approximation problems in Hilbert spaces. The proposed theorem generalizes to the case of bounded linear operators the previous results obtained in the finite dimensional case for the Frobenius norm. The theorem provides the basis for the design of tractable algorithms for kernel or continuous DMD.
翻译:这项工作为Hilbert空间的一大批低级近似问题提供了封闭式解决方案和最小的可实现错误。 拟议的理论理论将以前在Frobenius规范的有限维度案例中获得的结果概括到受约束线性操作员的情况。 该理论为设计内核或连续 DMD 的可移动算法提供了基础。