In this paper, we investigate common pitfalls affecting the evaluation of authentication systems based on touch dynamics. We consider different factors that lead to misrepresented performance, are incompatible with stated system and threat models or impede reproducibility and comparability with previous work. Specifically, we investigate the effects of (i) small sample sizes (both number of users and recording sessions), (ii) using different phone models in training data, (iii) selecting non-contiguous training data, (iv) inserting attacker samples in training data and (v) swipe aggregation. We perform a systematic review of 30 touch dynamics papers showing that all of them overlook at least one of these pitfalls. To quantify each pitfall's effect, we design a set of experiments and collect a new longitudinal dataset of touch dynamics from 470 users over 31 days comprised of 1,166,092 unique swipes. We make this dataset and our code available online. Our results show significant percentage-point changes in reported mean EER for several pitfalls: including attacker data (2.55%), non-contiguous training data (3.8%), phone model mixing (3.2%-5.8%). We show that, in a common evaluation setting, cumulative effects of these evaluation choices result in a combined difference of 8.9% EER. We also largely observe these effects across the entire ROC curve. Furthermore, we validate the pitfalls on four distinct classifiers - SVM, Random Forest, Neural Network, and kNN. Based on these insights, we propose a set of best practices that, if followed, will lead to more realistic and comparable reporting of results in the field.
翻译:在本文中,我们调查了影响根据触摸动态对认证系统进行评估的常见陷阱。我们考虑了导致不实表现的不同因素,与所述系统和威胁模型不相容,或阻碍与先前工作的重复性和可比性。具体地说,我们调查了以下因素的影响:(一) 小规模抽样规模(包括用户数量和记录会议),(二) 使用不同的电话模型培训数据,(三) 选择不连续的培训数据,(四) 在培训数据中插入攻击者样本,(五) 编织。我们系统地审查了30份触摸动态文件,显示所有这些文件至少忽略了其中的一个陷阱。为了量化每个陷阱的效果,我们设计了一套实验,并从470个用户收集了新的触碰动态的纵向数据集(包括1,166,092个独特的节点),(二) 使用不同的电话模型,(三) 在线提供这一数据集和我们的代码。我们的结果显示,在报告的EER值中, 包括攻击者数据(2.55 %), 不连续的培训数据(3.8%), 不重复的培训数据(3.2%), 内部结果(3.2%) 和网络的模型混合(8.8%) ) 将显示这些结果。