We give an algorithm for augmenting the edge connectivity of an undirected graph by using the isolating cuts framework (Li and Panigrahi, FOCS '20). Our algorithm uses poly-logarithmic calls to any max-flow algorithm, which yields a running time of $\tilde O(m + n^{3/2})$ and improves on the previous best time of $\tilde O(n^2)$ (Bencz\'ur and Karger, SODA '98) for this problem. We also obtain an identical improvement in the running time of the closely related edge splitting off problem in undirected graphs.


翻译:我们给出了一种算法,通过使用孤立断层框架(Li和Panigrahi,FOCS '20)来增加未定向图的边缘连通性。我们的算法将多对数调用到任何最大流算法中,这种算法产生一个运行时间为$\tilde O(m + n ⁇ 3/2})$(m + n ⁇ 3/2美元)的运行时间,并改进了以前在这个问题上的最佳时间$\tilde O(n ⁇ 2)$(Bencz\'ur和Karger,SODA '98)的运行时间。我们同样改进了在未定向图表中密切相关的边缘分割问题的运行时间。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2021年7月1日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
9+阅读 · 2020年10月29日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员