Effective network congestion control strategies are key to keeping the Internet (or any large computer network) operational. Network congestion control has been dominated by hand-crafted heuristics for decades. Recently, ReinforcementLearning (RL) has emerged as an alternative to automatically optimize such control strategies. Research so far has primarily considered RL interfaces which block the sender while an agent considers its next action. This is largely an artifact of building on top of frameworks designed for RL in games (e.g. OpenAI Gym). However, this does not translate to real-world networking environments, where a network sender waiting on a policy without sending data leads to under-utilization of bandwidth. We instead propose to formulate congestion control with an asynchronous RL agent that handles delayed actions. We present MVFST-RL, a scalable framework for congestion control in the QUIC transport protocol that leverages state-of-the-art in asynchronous RL training with off-policy correction. We analyze modeling improvements to mitigate the deviation from Markovian dynamics, and evaluate our method on emulated networks from the Pantheon benchmark platform. The source code is publicly available at https://github.com/facebookresearch/mvfst-rl.


翻译:有效的网络拥堵控制战略是保持互联网(或任何大型计算机网络)运作的关键。 网络拥堵控制几十年来一直以手工制作的超光速控制为主。 最近,SergementLlearning(RL)已经出现,作为自动优化这种控制战略的替代方案。 到目前为止,研究主要审议了阻塞发件人的RL界面,而代理商则考虑其下一步行动。这基本上是在为RL设计的游戏框架(如OpenAI Gym)之上建起的工艺品。然而,这并没有转化为真实世界的网络环境,在这样的环境中,一个网络发送者等待一项政策而不发送数据导致频带利用不足。我们相反地提议用一个非同步RL(RL)代理器来制定拥堵控制拥堵控制。 我们提出MVFST-RL,这是QuIC运输协议中一个可扩缩的交通控制框架,在非同步的RL培训中利用State-fornous RL 的状态,进行非政策校正校正。 我们分析改进模型,以减少对Markovian的动态的偏差,并评估我们在Panfliflibasm/ searmaskread/ appregregregypal pral prestpal 平台上可提供。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员