In the spatial action representation, the action space spans the space of target poses for robot motion commands, i.e. SE(2) or SE(3). This approach has been used to solve challenging robotic manipulation problems and shows promise. However, the method is often limited to a three dimensional action space and short horizon tasks. This paper proposes ASRSE3, a new method for handling higher dimensional spatial action spaces that transforms an original MDP with high dimensional action space into a new MDP with reduced action space and augmented state space. We also propose SDQfD, a variation of DQfD designed for large action spaces. ASRSE3 and SDQfD are evaluated in the context of a set of challenging block construction tasks. We show that both methods outperform standard baselines and can be used in practice on real robotics systems.
翻译:在空间行动代表中,行动空间跨越了机器人运动指令(即SE(2)或SE(3))的目标设定空间。这一方法已被用于解决具有挑战性的机器人操纵问题并显示出希望。然而,该方法往往限于三维行动空间和短期任务。本文提议ASRSE3, 这是一种处理具有高维行动空间的更高维空间行动空间的新方法,它将原来的具有高维行动空间的MDP转化为一个新的MDP,其行动空间减少,国家空间扩大。我们还提议SDQfD, 用于大型行动空间的DQfD变异。ASRSE3和SDQfD是在一套具有挑战性的块建筑任务的背景下进行评估的。我们表明,这两种方法都优于标准基线,可用于实际机器人系统。