In this paper, we consider tests for ultrahigh-dimensional partially linear regression models. The presence of ultrahigh-dimensional nuisance covariates and unknown nuisance function makes the inference problem very challenging. We adopt machine learning methods to estimate the unknown nuisance function and introduce quadratic-form test statistics. Interestingly, though the machine learning methods can be very complex, under suitable conditions, we establish the asymptotic normality of our introduced test statistics under the null hypothesis and local alternative hypotheses. We further propose a power-enhanced procedure to improve the test statistics' performance. Two thresholding determination methods are provided for the power-enhanced procedure. We show that the power-enhanced procedure is powerful to detect signals under either sparse or dense alternatives and it can still control the type-I error asymptotically under the null hypothesis. Numerical studies are carried out to illustrate the empirical performance of our introduced procedures.
翻译:在本文中,我们考虑了针对超高维部分线性回归模型的检验问题。超高维的干扰协变量和未知的干扰函数使得推断问题非常具有挑战性。我们采用机器学习方法来估计未知的干扰函数,并引入二次型检验统计量。有趣的是,尽管机器学习方法可以非常复杂,但在适当的条件下,我们在零假设和局部备择假设下建立了我们引入的检验统计量的渐近正态性。我们进一步提出了一种增强功率的过程来提高检验统计量的性能。我们为增强功率的过程提供了两种阈值确定方法。我们展示了增强功率的过程在稀疏或密集备择假设下检测信号的能力,且在零假设下渐近控制了类型I错误。我们进行了数值研究,以说明我们引入的程序的实证性能。