一文看懂线性回归(3个优缺点+8种方法评测)

2019 年 10 月 16 日 AINLP


线性回归是很基础的机器学习算法,本文将通俗易懂的介绍线性回归的基本概念,优缺点,8 种方法的速度评测,还有和逻辑回归的比较。

什么是线性回归?

线性回归的位置如上图所示,它属于机器学习 - 监督学习 - 回归 - 线性回归。

扩展阅读:

机器学习

监督学习

什么是回归?

回归的目的是为了预测,比如预测明天的天气温度,预测股票的走势…

回归之所以能预测是因为他通过历史数据,摸透了“套路”,然后通过这个套路来预测未来的结果。

什么是线性?

“越…,越…”符合这种说法的就可能是线性个关系:

「房子」越大,「租金」就越高

「汉堡」买的越多,花的「钱」就越多

杯子里的「水」越多,「重量」就越大

……

但是并非所有“越…,越…”都是线性的,比如“充电越久,电量越高”,他就类似下面的非线性曲线:

线性关系不仅仅只能存在 2 个变量(二维平面)。3 个变量时(三维空间),线性关系就是一个平面,4 个变量时(四维空间),线性关系就是一个体。以此类推…

什么是线性回归?

线性回归本来是是统计学里的概念,现在经常被用在机器学习中。

如果 2 个或者多个变量之间存在“线性关系”,那么我们就可以通过历史数据,摸清变量之间的“套路”,建立一个有效的模型,来预测未来的变量结果。

线性回归的优缺点

优点:

  1. 建模速度快,不需要很复杂的计算,在数据量大的情况下依然运行速度很快。

  2. 可以根据系数给出每个变量的理解和解释

缺点:不能很好地拟合非线性数据。所以需要先判断变量之间是否是线性关系。

为什么在深度学习大杀四方的今天还使用线性回归呢?

一方面,线性回归所能够模拟的关系其实远不止线性关系。线性回归中的“线性”指的是系数的线性,而通过对特征的非线性变换,以及广义线性模型的推广,输出和特征之间的函数关系可以是高度非线性的。另一方面,也是更为重要的一点,线性模型的易解释性使得它在物理学、经济学、商学等领域中占据了难以取代的地位。

8 种Python线性回归的方法的速度评测

  1. Scipy.polyfit( ) or numpy.polyfit( )

  2. Stats.linregress( )

  3. Optimize.curve_fit( )

  4. numpy.linalg.lstsq

  5. Statsmodels.OLS ( )

  6. 简单的乘法求矩阵的逆

  7. 首先计算x的Moore-Penrose广义伪逆矩阵,然后与y取点积

  8. sklearn.linear_model.LinearRegression( )

结果:令人惊讶的是,与广泛被使用的scikit-learnlinear_model相比,简单矩阵的逆求解的方案反而更加快速。

详细评测可以查看原文《Data science with Python: 8 ways to do linear regression and measure their speed》

https://www.freecodecamp.org/news/data-science-with-python-8-ways-to-do-linear-regression-and-measure-their-speed-b5577d75f8b/

线性回归 VS 逻辑回归

线性回归和逻辑回归是 2 种经典的算法。经常被拿来做比较,下面整理了一些两者的区别:

  1. 线性回归只能用于回归问题,逻辑回归虽然名字叫回归,但是更多用于分类问题(关于回归和分类的区别可以看看这篇文章《监督学习》)

  2. 线性回归要求因变量是连续性数值变量,而逻辑回归要求因变量是离散的变量

  3. 线性回归要求自变量和因变量呈线性关系,而逻辑回归不要求自变量和因变量呈线性关系

  4. 线性回归可以直观的表达自变量和因变量之间的关系,逻辑回归则无法表达变量之间的关系

注:

自变量:主动操作的变量,可以看做「因变量」的原因

因变量:因为「自变量」的变化而变化,可以看做「自变量」的结果。也是我们想要预测的结果。





登录查看更多
19

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】用于概率、统计和机器学习的Python,288页pdf
专知会员服务
290+阅读 · 2020年6月3日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
197+阅读 · 2020年5月2日
干货书《数据科学数学系基础》2020最新版,266页pdf
专知会员服务
321+阅读 · 2020年3月23日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
【华侨大学】基于混合深度学习算法的疾病预测模型
专知会员服务
97+阅读 · 2020年1月21日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
一文读懂机器学习模型的选择与取舍
DBAplus社群
13+阅读 · 2019年8月25日
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点
人工智能学家
11+阅读 · 2019年2月15日
【干货】机器学习中的五种回归模型及其优缺点
机器学习算法与Python学习
7+阅读 · 2018年8月10日
用Python实现线性回归,8种方法哪个最高效?
七月在线实验室
7+阅读 · 2018年4月19日
最适合机器学习新手的10种算法
论智
9+阅读 · 2018年1月23日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
6+阅读 · 2018年5月22日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
一文读懂机器学习模型的选择与取舍
DBAplus社群
13+阅读 · 2019年8月25日
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点
人工智能学家
11+阅读 · 2019年2月15日
【干货】机器学习中的五种回归模型及其优缺点
机器学习算法与Python学习
7+阅读 · 2018年8月10日
用Python实现线性回归,8种方法哪个最高效?
七月在线实验室
7+阅读 · 2018年4月19日
最适合机器学习新手的10种算法
论智
9+阅读 · 2018年1月23日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
Top
微信扫码咨询专知VIP会员