This research presents an examination of categorizing the severity states of patients based on their electronic health records during a certain time range using multiple machine learning and deep learning approaches. The suggested method uses an EHR dataset collected from an open-source platform to categorize severity. Some tools were used in this research, such as openRefine was used to pre-process, RapidMiner was used for implementing three algorithms (Fast Large Margin, Generalized Linear Model, Multi-layer Feed-forward Neural Network) and Tableau was used to visualize the data, for implementation of algorithms we used Google Colab. Here we implemented several supervised and unsupervised algorithms along with semi-supervised and deep learning algorithms. The experimental results reveal that hyperparameter-tuned Random Forest outperformed all the other supervised machine learning algorithms with 76% accuracy as well as Generalized Linear algorithm achieved the highest precision score 78%, whereas the hyperparameter-tuned Hierarchical Clustering with 86% precision score and Gaussian Mixture Model with 61% accuracy outperformed other unsupervised approaches. Dimensionality Reduction improved results a lot for most unsupervised techniques. For implementing Deep Learning we employed a feed-forward neural network (multi-layer) and the Fast Large Margin approach for semi-supervised learning. The Fast Large Margin performed really well with a recall score of 84% and an F1 score of 78%. Finally, the Multi-layer Feed-forward Neural Network performed admirably with 75% accuracy, 75% precision, 87% recall, 81% F1 score.
翻译:此项研究通过多种机器学习和深层学习方法,根据病人在一定时间范围内的电子健康记录对患者严重程度进行分类。 推荐的方法使用从开放源码平台收集的 EHR 数据集来分类严重程度。 一些工具, 如 OpenRefine 用于预处理 。 Rap Miner 用于实施三种算法( 远大边距、 通用线性线性模型、 多层向向前神经网络), 而表au 被用于直观数据, 以实施我们使用的 Google Colab 算法。 我们在这里与半监督和深层学习算法一起, 实施了几个监管和非监督的 EHR 数据集。 实验结果显示, 超参数调随机森林超越了所有其他有监督的机器学习算法, 准确度为76%, 通用线性算法达到最高精确分 78 %, 而超度调高度的高度分集集集, 以61% 的精度计算模型比其他不精确的精度比, 其它不精确的Nevisural Ral 算法 。, 快速计算了高级网络,, 做了一个最精确的缩缩缩缩化的排序, 升级, 升级 升级, 升级 方法, 升级, 升级 升级 做了一个最高级,, 做了一个用于,,, 升级,, 级级级级级级级性,,, 进行最高级, 升级 升级,,, 升级 升级,, 升级 升级, 升级,,,, 升级,, 升级, 用于 进行 进行,,, 升级,,,,,, 升级 级 级 级 级 级 级 级 级 级 级 级, 级 级 级 级 级 级 级 级 级 级 级 级 级, 级, 级,, 级 级, 级 级 级 级 进行 进行 级,, 级 级 级 级 级 级 级