Reranking methods in machine translation aim to close the gap between common evaluation metrics (e.g. BLEU) and maximum likelihood learning and decoding algorithms. Prior works address this challenge by training models to rerank beam search candidates according to their predicted BLEU scores, building upon large models pretrained on massive monolingual corpora -- a privilege that was never made available to the baseline translation model. In this work, we examine a simple approach for training rerankers to predict translation candidates' BLEU scores without introducing additional data or parameters. Our approach can be used as a clean baseline, decoupled from external factors, for future research in this area.
翻译:机器翻译的重新排序方法旨在缩小通用评价指标(如BLEU)与最大可能性的学习和解码算法之间的差距。先前的工作通过培训模型来应对这一挑战,根据预测的BLEU分数重新排列光束搜索候选人的级别,在大规模单一语言的单一翻译模式上预先培训的大型模型为基础,这一特权从未提供给基线翻译模式。在这项工作中,我们研究了一种简单的方法来培训重新排序者,以预测候选人的BLEU分数,而不引入其他数据或参数。我们的方法可以用作清洁的基线,与外部因素脱钩,用于今后这一领域的研究。