Reinforcement Learning (RL) has been widely explored in Traffic Signal Control (TSC) applications, however, still no such system has been deployed in practice. A key barrier to progress in this area is the reality gap, the discrepancy that results from differences between simulation models and their real-world equivalents. In this paper, we address this challenge by first presenting a comprehensive analysis of potential simulation parameters that contribute to this reality gap. We then also examine two promising strategies that can bridge this gap: Domain Randomization (DR) and Model-Agnostic Meta-Learning (MAML). Both strategies were trained with a traffic simulation model of an intersection. In addition, the model was embedded in LemgoRL, a framework that integrates realistic, safety-critical requirements into the control system. Subsequently, we evaluated the performance of the two methods on a separate model of the same intersection that was developed with a different traffic simulator. In this way, we mimic the reality gap. Our experimental results show that both DR and MAML outperform a state-of-the-art RL algorithm, therefore highlighting their potential to mitigate the reality gap in RLbased TSC systems.
翻译:暂无翻译