In this paper, we study the problem where a group of agents aim to collaboratively learn a common static latent function through streaming data. We propose a lightweight distributed Gaussian process regression (GPR) algorithm that is cognizant of agents' limited capabilities in communication, computation and memory. Each agent independently runs agent-based GPR using local streaming data to predict test points of interest; then the agents collaboratively execute distributed GPR to obtain global predictions over a common sparse set of test points; finally, each agent fuses results from distributed GPR with agent-based GPR to refine its predictions. By quantifying the transient and steady-state performances in predictive variance and error, we show that limited inter-agent communication improves learning performances in the sense of Pareto. Monte Carlo simulation is conducted to evaluate the developed algorithm.


翻译:在本文中,我们研究了一组代理商试图通过流数据合作学习共同静态潜伏功能的问题。我们建议使用轻量分流的高斯进程回归(GPR)算法,认识到代理商在通信、计算和记忆方面的能力有限。每个代理商独立运行基于代理商的GPR,利用当地流数据预测测试点;然后代理商合作实施分布式GPR,以获得对一组共同的稀疏测试点的全球预测;最后,每种代理商通过分布式GPR与基于代理商的GPR连接结果,以完善其预测。通过量化在预测差异和错误方面的短暂和稳定状态性表现,我们表明有限的代理商间通信提高了Pareto意义上的学习绩效。蒙特卡洛模拟是为了评估发达的算法。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2020年12月18日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
FORML: Learning to Reweight Data for Fairness
Arxiv
0+阅读 · 2022年2月3日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员