For high-rate maximum distance separable (MDS) codes, most of them are designed to optimally repair a single failed node by connecting all the surviving nodes. However, in practical systems, sometimes not all the surviving nodes are available. To facilitate the practical storage system, a few constructions of $(n,k)$ MDS codes with the property that any single failed node can be optimally repaired by accessing any $d$ surviving nodes have been proposed, where $d\in [k+1:n-1)$. However, all of them either have large sub-packetization levels or are not explicit for all the parameters. To address these issues, we propose a generic transformation that can convert any $(n',k')$ MDS code to another $(n,k)$ MDS code with the optimal repair property and optimal access property for an arbitrary set of two nodes, while the repair efficiency of the remaining $n-2$ nodes can be kept. By recursively applying the generic transformation to a scalar MDS code multiple times, we get an MDS code with the optimal repair property and the optimal access property for all nodes, which outperforms previous known MDS codes in terms of either the sub-packetization level or the flexibility of the parameters.
翻译:对于高率最大距离分解码(MDS),它们中的大多数设计目的是通过连接所有尚存节点来优化修理一个单一的失败节点。 但是,在实际系统中,有时并非所有的未存节点都可用。 为了便利实际储存系统,有些建造的(n,k)$MDS代码与任何单一失败节点都可以通过访问任何未断节点得到最佳最佳修复的产权和最佳访问产权的产权的产权($), 并提议保留其余的n- 2美元节点的修理效率。然而,所有这些节点要么有大型子包装节点,要么没有对所有参数做出明确的规定。为了解决这些问题,我们提议了一个通用的转换,可将任何$(n,k)$的MDS代码转换为另外的$(n,k)$(mDS)代码,该代码具有最佳修复属性和最优访问产权的功能,用于任意设置的两节点,而其余的n- 2美元节点的修理效率可以保留下来。通过反复将通用转换到一个标点代码中,我们得到一个MDS代码,该代码与已知的最佳修复状态或最灵活度标准,用于所有已知的MDFMDS的版本。