To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system and require the parameters of the model be identified. We address the latter problem of estimating parameters through a Bayesian inference approach that approximates a posterior distribution over simulation parameters given real sensor measurements. By extending the commonly used Gaussian likelihood model for trajectories via the multiple-shooting formulation, our chosen particle-based inference algorithm Stein Variational Gradient Descent is able to identify highly nonlinear, underactuated systems. We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel. Our algorithm infers non-parametric distributions over simulation parameters more accurately than comparable baselines and handles constraints over parameters efficiently through gradient-based optimization. We evaluate estimation performance on several physical experiments. On an underactuated mechanism where a 7-DOF robot arm excites an object with an unknown mass configuration, we demonstrate how our inference technique can identify symmetries between the parameters and provide highly accurate predictions. Project website: https://uscresl.github.io/prob-diff-sim
翻译:为了准确复制来自真实世界的测量结果,模拟器需要有一个适当的物理系统模型,并需要确定模型参数。我们通过一种比模拟参数近似外表分布的贝叶斯式推断法,通过真实传感器测量,解决估算参数的后一问题。通过多射式配方,扩大常用的高斯式轨道概率模型,我们选择的粒子推论算算法 Stein Variation Agent Emproduction能够识别高度非线性、低活性系统。我们利用GPU 代码生成和不同模拟来评估许多粒子平行的可能性及其梯度。我们的算法推论推论推论对模拟参数的非参数分布比可比基线更准确,并通过基于梯度的优化处理参数的制约。我们评估了几项物理实验的性能。在一种低活性机制中,一个7-DOF机器人臂将一个未知的物体放大,我们演示我们的推论技术如何识别参数之间的对称性和提供高度精确的预测。项目网站: https://usreps-probsimbs-prios-progimus-stimplifmations网站。