This paper discusses how to generate general graph node embeddings from knowledge graph representations. The embedded space is composed of a number of sub-features to mimic both local affinity and remote structural relevance. These sub-feature dimensions are defined by several indicators that we speculate to catch nodal similarities, such as hop-based topological patterns, the number of overlapping labels, the transitional probabilities (markov-chain probabilities), and the cluster indices computed by our recursive spectral bisection (RSB) algorithm. These measures are flattened over the one dimensional vector space into their respective sub-component ranges such that the entire set of vector similarity functions could be used for finding similar nodes. The error is defined by the sum of pairwise square differences across a randomly selected sample of graph nodes between the assumed embeddings and the ground truth estimates as our novel loss function. The ground truth is estimated to be a combination of pairwise Jaccard similarity and the number of overlapping labels. Finally, we demonstrate a multi-variate stochastic gradient descent (SGD) algorithm to compute the weighing factors among sub-vector spaces to minimize the average error using a random sampling logic.
翻译:暂无翻译