Accurate radio frequency power prediction in a geographic region is a computationally expensive part of finding the optimal transmitter location using a ray tracing software. We empirically analyze the viability of deep learning models to speed up this process. Specifically, deep learning methods including CNNs and UNET are typically used for segmentation, and can also be employed in power prediction tasks. We consider a dataset that consists of radio frequency power values for five different regions with four different frame dimensions. We compare deep learning-based prediction models including RadioUNET and four different variations of the UNET model for the power prediction task. More complex UNET variations improve the model on higher resolution frames such as 256x256. However, using the same models on lower resolutions results in overfitting and simpler models perform better. Our detailed numerical analysis shows that the deep learning models are effective in power prediction and they are able to generalize well to the new regions.
翻译:准确预测一个地理区域的无线电频率是利用射线追踪软件寻找最佳发射机位置的一个计算成本很高的部分。我们用经验分析深学习模型的可行性以加快这一过程。具体地说,包括CNN和UNET在内的深学习方法通常用于分割,也可以用于动力预测任务。我们考虑由五个不同区域的射频功率值组成的数据集,该数据集有四个不同的框架维度。我们比较了深学习基预测模型,包括RadioUNET, 以及用于电力预测任务的UNET模型的四个不同的变异。更为复杂的UNET变异改进了高分辨率框架(如256x256)的模型,但利用低分辨率模型的相同模型,使分辨率结果更合适、更简单的模型效果更好。我们的详细数字分析显示,深学习模型在能力预测方面是有效的,能够向新的区域推广。