We present an algorithmic framework for quantum-inspired classical algorithms on close-to-low-rank matrices, generalizing the series of results started by Tang's breakthrough quantum-inspired algorithm for recommendation systems [STOC'19]. Motivated by quantum linear algebra algorithms and the quantum singular value transformation (SVT) framework of Gily\'en, Su, Low, and Wiebe [STOC'19], we develop classical algorithms for SVT that run in time independent of input dimension, under suitable quantum-inspired sampling assumptions. Our results give compelling evidence that in the corresponding QRAM data structure input model, quantum SVT does not yield exponential quantum speedups. Since the quantum SVT framework generalizes essentially all known techniques for quantum linear algebra, our results, combined with sampling lemmas from previous work, suffice to generalize all recent results about dequantizing quantum machine learning algorithms. In particular, our classical SVT framework recovers and often improves the dequantization results on recommendation systems, principal component analysis, supervised clustering, support vector machines, low-rank regression, and semidefinite program solving. We also give additional dequantization results on low-rank Hamiltonian simulation and discriminant analysis. Our improvements come from identifying the key feature of the quantum-inspired input model that is at the core of all prior quantum-inspired results: $\ell^2$-norm sampling can approximate matrix products in time independent of their dimension. We reduce all our main results to this fact, making our exposition concise, self-contained, and intuitive.
翻译:我们为近距离到低距离矩阵的量子启发古典算法提供了一种算法框架,将由唐氏突破性数据结构输入模型[STOC'19]开始的一系列结果加以概括化。我们为SVT开发了一个典型算法框架,该算法以近距离到低距离矩阵的量子线代数算法和Gily\'en、Su、Low和Wiebe[STOC'19]的量子单值转换框架为动力。我们为SVT开发了一个经典算法框架,该算法在不依赖投入层面的情况下,在适当的量子激励采样假设假设下运行。我们的结果令人信服地证明,在相应的 QRAM数据结构输入模型中, 量子SVT的量子采样输入模型不会产生指数加速化。SVT的量子量子体计算法框架将所有已知的量子线值代数代数代数变数变法(SVT) 和量子学习算法(SOC'19) 的量子学习算法的所有最新结果概括化。特别是,我们传统的SVT框架可以恢复并经常改进我们所有建议系统、主序矩阵的分解的分解的分解结果,, 自我分析, 自我分析, 基础化的精化的精化的精化的精化的精化的精化的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制的精制。