We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low dimensional variable interactions. Compactly supported periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis on the torus. With a variable transformation we are able to transform the approximation rates and fast algorithms from the torus to other domains. We perform and analyze scattered-data approximation for smooth but arbitrary density functions by using a least squares method. The corresponding system matrix is sparse due to the compact support of the wavelets, which leads to a significant acceleration of the matrix vector multiplication. For non-periodic functions we propose a new extension method. A proper choice of the extension parameter together with the piece-wise polynomial Chui-Wang wavelets extends the functions appropriately. In every case we are able to bound the approximation error with high probability. Additionally, if the function has low effective dimension (i.e. only interactions of few variables), we qualitatively determine the variable interactions and omit ANOVA terms with low variance in a second step in order to decrease the approximation error. This allows us to suggest an adapted model for the approximation. Numerical results show the efficiency of the proposed method.
翻译:我们使用超曲波子回归法快速重建高维功能,这些功能仅具有低维变量互动。 常规支持的定期清- Wang 波子波子, 用于在托鲁斯的加压超双曲波子基础上。 通过变量变换, 我们能够将近似速率和快速算法从托鲁斯转换到其它领域。 我们使用最小方位方法, 执行并分析光滑但任意密度函数的分散数据近似值。 相应的系统矩阵由于波子的紧凑支持而稀少, 从而导致矩阵矢量倍增的显著加速。 对于非定期函数, 我们提出新的扩展方法。 适当选择扩展参数, 连同片态多维维- Wang 波子一起适当扩展函数。 在每一种情况下, 我们都能将近似误差值绑定为高概率。 此外, 如果函数的维度低( 即只有几个变量的交互作用), 我们定性地决定变量的交互作用, 并忽略了低差异的 ANOVA 条件, 以第二步为减少近似误差 。 这使我们能够建议一个模型 。