We give the first polynomial-time algorithm to estimate the mean of a $d$-variate probability distribution with bounded covariance from $\tilde{O}(d)$ independent samples subject to pure differential privacy. Prior algorithms for this problem either incur exponential running time, require $\Omega(d^{1.5})$ samples, or satisfy only the weaker concentrated or approximate differential privacy conditions. In particular, all prior polynomial-time algorithms require $d^{1+\Omega(1)}$ samples to guarantee small privacy loss with "cryptographically" high probability, $1-2^{-d^{\Omega(1)}}$, while our algorithm retains $\tilde{O}(d)$ sample complexity even in this stringent setting. Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms. SoS proofs to algorithms is a key theme in numerous recent works in high-dimensional algorithmic statistics -- estimators which apparently require exponential running time but whose analysis can be captured by low-degree Sum of Squares proofs can be automatically turned into polynomial-time algorithms with the same provable guarantees. We demonstrate a similar proofs to private algorithms phenomenon: instances of the workhorse exponential mechanism which apparently require exponential time but which can be analyzed with low-degree SoS proofs can be automatically turned into polynomial-time differentially private algorithms. We prove a meta-theorem capturing this phenomenon, which we expect to be of broad use in private algorithm design. Our techniques also draw new connections between differentially private and robust statistics in high dimensions. In particular, viewed through our proofs-to-private-algorithms lens, several well-studied SoS proofs from recent works in algorithmic robust statistics directly yield key components of our differentially private mean estimation algorithm.


翻译:我们给出第一个多元时间算法, 来估算美元差概率分布的平均值, 以来自 $\ tilde{ O} (d) 的独立样本中受纯差异隐私限制的封闭性共差分配。 这个问题的先前算法要么产生指数运行时间, 需要$\ Omega( d ⁇ 1.5}) 样本, 要么只满足较弱的集中性或近似差异性隐私条件。 特别是, 之前所有多时算法都需要$d ⁇ 1\\ ⁇ ⁇ Omega(1)} 样本, 以保证小额隐私损失的最小值分配率, 由 美元差1-2 ⁇ - d ⁇ Omega(1) =$, 而我们的算法即使在这个严格的环境下, 也保留了 $\ talde{d) 样本复杂性。 我们的主要技术是一种新方法, 使用强大的平方位计算法方法来设计差别化的私人算法。 因此, 算法的证据是最近许多工作的一个不同主题, 高度计算法的精确性统计学数据显然需要指数运行时间, 但其分析可以通过低度的精确度 。 我们的快速的快速算算算算算法, 也可以自动地算算算法 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员