Physical unclonable functions (PUFs) are hardware-oriented primitives that exploit manufacturing variations to generate a unique identity for a physical system. Recent advancements showed how DRAM can be exploited to implement PUFs. DRAM PUFs require no additional circuits for PUF operations and can be used in most of the applications with resource-constrained nodes such as Internet of Things (IoT) networks. However, the existing DRAM PUF solutions either require to interrupt other functions in the host system, or provide unreliable responses due to their sensitiveness to the environmental conditions. In this paper, we propose EPUF, a novel strategy to extract random and unique features from DRAM cells to generate reliable PUF responses. In particular, we use the bitmap images of the binary DRAM values and their entropy features. We show via real device experiments that EPUF is approximately $1.7$ times faster than other state of the art solutions, achieves $100\%$ reliability, generates features with $47.79\%$ uniqueness, and supports a large set of CRP that leads to new potentials for DRAM PUF-based authentication. We also propose a lightweight authentication protocol based on EPUF, which not only provides far better security guarantees but also outperforms the state-of-the-art in terms of communication overhead and computational cost.
翻译:暂无翻译