Chest radiograph (or Chest X-Ray, CXR) is a popular medical imaging modality that is used by radiologists across the world to diagnose heart or lung conditions. Over the last decade, Convolutional Neural Networks (CNN), have seen success in identifying pathologies in CXR images. Typically, these CNNs are pretrained on the standard ImageNet classification task, but this assumes availability of large-scale annotated datasets. In this work, we analyze the utility of pretraining on unlabeled ImageNet or Chest X-Ray (CXR) datasets using various algorithms and in multiple settings. Some findings of our work include: (i) supervised training with labeled ImageNet learns strong representations that are hard to beat; (ii) self-supervised pretraining on ImageNet (~1M images) shows performance similar to self-supervised pretraining on a CXR dataset (~100K images); and (iii) the CNN trained on supervised ImageNet can be trained further with self-supervised CXR images leading to improvements, especially when the downstream dataset is on the order of a few thousand images.
翻译:切斯特射线仪(或Chest X-Ray, CXR)是一种流行的医疗成像模式,世界各地的放射学家都使用这种模式来诊断心脏或肺部状况。在过去的十年中,革命神经网络(CNN)在确定 CXR 图像中的病理方面取得了成功。 这些CNN在标准图像网络分类任务上受过预先培训,但这假定有大规模附加说明的数据集。在这项工作中,我们分析了无标签图像网或Chest X-Ray (CXR) 数据集预培训的效用,使用各种算法和多种设置。我们工作的一些发现包括:(一) 与标签图像网络(CNN) 的监督下培训学会了难以击败的强烈表现;(二) 图像网络(~1M 图像) 自我监督前培训的性能与CXR 数据集(~ 100K 图像) 自我监控前培训相似;(三) 受监督的CNNM 受监督的图像网络可以进一步培训,使用几部自我监控的CXR 图像,在下游的顺序上可以改进。