The ubiquity of digital music consumption has made it possible to extract information about modern music that allows us to perform large scale analysis of stylistic change over time. In order to uncover underlying patterns in cultural evolution, we examine the relationship between the established characteristics of different genres and styles, and the introduction of novel ideas that fuel this ongoing creative evolution. To understand how this dynamic plays out and shapes the cultural ecosystem, we compare musical artifacts to their contemporaries to identify novel artifacts, study the relationship between novelty and commercial success, and connect this to the changes in musical content that we can observe over time. Using Music Information Retrieval (MIR) data and lyrics from Billboard Hot 100 songs between 1974-2013, we calculate a novelty score for each song's aural attributes and lyrics. Comparing both scores to the popularity of the song following its release, we uncover key patterns in the relationship between novelty and audience reception. Additionally, we look at the link between novelty and the likelihood that a song was influential given where its MIR and lyrical features fit within the larger trends we observed.


翻译:数字音乐消费的无处不在,使我们得以获取现代音乐信息,从而可以对时空变化进行大规模分析。为了发现文化演化的基本模式,我们审视了不同类型和风格的既定特征与引入有助于这种正在进行的创造性演进的新理念之间的关系。为了了解这种动态如何产生并塑造了文化生态系统,我们将音乐文物与同代音乐文物进行比较,以识别新手工艺品,研究新手与商业成功之间的关系,并将之与我们随着时间的推移可以观察到的音乐内容的变化联系起来。我们利用1974-2013年期间比尔板热100歌曲的音乐信息检索数据与歌词,我们计算每首歌曲的音义属性和歌词的新手谱。将这首歌的分数与歌曲发行后的流行程度结合起来,我们发现新手和观众接待之间的关系的关键模式。此外,我们审视了新手和歌曲具有影响力的可能性之间的联系,因为音乐的MIR和语言特征适合我们观察到的大趋势。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员