项目名称: 石墨烯纳米带与衬底相互作用的第一性原理研究

项目编号: No.11204296

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 杨身园

作者单位: 中国科学院半导体研究所

项目金额: 25万元

中文摘要: 因其独特的能带结构及物理性质,石墨烯引起了广泛的关注,被认为是制备新型纳米电子元件、光电子元件和晶体管的最优良材料之一。石墨烯纳米结构边缘与半导体衬底之间会形成较强的成键作用,石墨烯纳米结构的物理性质及石墨烯纳米电子元件的性能如何受其影响是石墨烯器件应用急需解决的一个关键问题。在本项目中,我们拟利用基于密度泛函理论的第一性原理计算,系统地研究衬底/石墨烯纳米带系统的原子结构和电子结构。通过理论模拟我们可以得到石墨烯纳米带在衬底上的吸附结构,并分析衬底与纳米带之间的相互作用和电荷转移,尤其是与边界原子的相互作用。通过比较吸附在衬底上的石墨烯纳米带与自由纳米带,可以评估衬底对石墨烯纳米带电子结构和磁性性质的影响。另外,我们将考虑衬底与氮掺杂石墨烯纳米带的相互作用,关注在不同掺杂位置和掺杂浓度条件下衬底与杂质的相互作用如何影响纳米带性质,作为进一步调控纳米带性质的方法。

中文关键词: 第一性原理计算;石墨烯纳米带;衬底;掺杂;界面

英文摘要: Graphene has been attracting great interest because of its unique band structure and physical properties, and has been considered as one of the most promising materials for future nanoelectronics, optoelectronics, and transistors. A key open question is how the strong bonding interactions between the semiconductor substrate and the edge of graphene nanostructures influence the physical properties of graphene nanostructures and the performance of graphene nanoelectronics. In this project, we plan to systematically study the structure and electronic properties of substrate/graphene-nanoribbon system using first-principles calculations based on density functional theory. After obtaining the detailed geometries of graphene nanoribbon on semiconductor substrate from the simulation, we will analyze the bonding interaction between the substrate and the graphene nanoribbon and the resulting charge transfer, especially between the substrate and the edge atoms of the nanoribbon. By comparing the adsorbed graphenen nanoribbons and free-standing nanoribbons, we can analyze the substrate effects on electronic structure and magnetic properties of graphene nanostructures. Furthermore, we will consider the interaction between substrate and N-doped graphene nanoribbons as an additional way to tune the properties of graphene nano

英文关键词: first-principles calculations;graphene nanoribbons;substrate;doping;interface

成为VIP会员查看完整内容
0

相关内容

《美国陆军武器系统手册(2020-2021)》432页pdf
专知会员服务
116+阅读 · 2022年4月11日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
【Twitter】时序图神经网络
专知会员服务
91+阅读 · 2020年10月15日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
Arxiv
126+阅读 · 2020年9月6日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关VIP内容
《美国陆军武器系统手册(2020-2021)》432页pdf
专知会员服务
116+阅读 · 2022年4月11日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
【Twitter】时序图神经网络
专知会员服务
91+阅读 · 2020年10月15日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员