We study the existence and uniqueness of Lp-bounded mild solutions for a class ofsemilinear stochastic evolutions equations driven by a real L\'evy processes withoutGaussian component not square integrable for instance the stable process through atruncation method by separating the big and small jumps together with the classicaland simple Banach fixed point theorem ; under local Lipschitz, Holder, linear growthconditions on the coefficients.
翻译:我们研究的是,由真正的L\'evy过程驱动的、没有加苏西人成分的不平整的半线性随机进化方程式,例如,通过将大型和小型跳跃与古典和简单的Banach固定点定理词分开,从而通过排污法的稳定过程;根据当地Lipschitz, Holder, 有关系数的线性增长条件。