Methods for model explainability have become increasingly critical for testing the fairness and soundness of deep learning. Concept-based interpretability techniques, which use a small set of human-interpretable concept exemplars in order to measure the influence of a concept on a model's internal representation of input, are an important thread in this line of research. In this work we show that these explainability methods can suffer the same vulnerability to adversarial attacks as the models they are meant to analyze. We demonstrate this phenomenon on two well-known concept-based interpretability methods: TCAV and faceted feature visualization. We show that by carefully perturbing the examples of the concept that is being investigated, we can radically change the output of the interpretability method. The attacks that we propose can either induce positive interpretations (polka dots are an important concept for a model when classifying zebras) or negative interpretations (stripes are not an important factor in identifying images of a zebra). Our work highlights the fact that in safety-critical applications, there is need for security around not only the machine learning pipeline but also the model interpretation process.


翻译:模型解释方法对于测试深层学习的公平和合理性越来越重要。基于概念的解释技术,使用少量的人类解释概念示例来测量概念对模型输入的内部表述的影响,是这一研究线的一个重要线索。在这项工作中,我们表明,这些解释方法可能遭受与其要分析的模式一样的对抗性攻击的同样脆弱性。我们用两种以概念为基础的解释方法来证明这种现象:TCAV和面对面特征可视化。我们通过仔细透视正在调查的概念实例表明,我们可以从根本上改变可解释方法的产出。我们提出的攻击既可以引起积极的解释(Polka点是模型对斑马进行分类时的一个重要概念),也可以引起负面解释(三角点不是确定斑马图像的重要因素)。我们的工作突出表明,在安全临界的应用中,不仅需要围绕机器学习管道的安全,而且还需要示范解释过程的安全。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
83+阅读 · 2022年7月16日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员