The ubiquity of user accounts in websites and online services makes account hijacking a serious security concern. Although previous research has studied various techniques through which an attacker can gain access to a victim's account, relatively little attention has been directed towards the process of account creation. The current trend towards federated authentication (e.g., Single Sign-On) adds an additional layer of complexity because many services now support both the classic approach in which the user directly sets a password, and the federated approach in which the user authenticates via an identity provider. Inspired by previous work on preemptive account hijacking [Ghasemisharif et al., USENIX SEC 2018], we show that there exists a whole class of account pre-hijacking attacks. The distinctive feature of these attacks is that the attacker performs some action before the victim creates an account, which makes it trivial for the attacker to gain access after the victim has created/recovered the account. Assuming a realistic attacker who knows only the victim's email address, we identify and discuss five different types of account pre-hijacking attacks. To ascertain the prevalence of such vulnerabilities in the wild, we analyzed 75 popular services and found that at least 35 of these were vulnerable to one or more account pre-hijacking attacks. Whilst some of these may be noticed by attentive users, others were completely undetectable from the victim's perspective. Finally, we investigated the root cause of these vulnerabilities and present a set of security requirements to prevent such vulnerabilities arising in future.


翻译:网站和在线服务中用户账户的无处不在增加了一层复杂性,因为许多服务现在既支持用户直接设定密码的经典方法,又支持用户通过身份提供者认证的联邦方法。根据先前关于先发制人劫持[Ghasemisharif et al., USENIX SEC 2018]的工作,我们发现并讨论五种不同类别的账户前劫机前袭击要求。为了确定袭击者在受害者之前采取的一些行动,这些袭击者创建了一个账户,这使得袭击者在受害者创建/收回账户后获得访问无关紧要。假设袭击者只知道受害人的电子邮件地址,我们发现并讨论五种不同类别的账户前劫机前袭击要求[Ghasemisharif, USENIX SEC 2018],我们发现存在整个账户劫机前袭击过程。这些袭击的特征是:袭击者在受害者之前采取了某种行动,因此袭击者在受害者创建/恢复了账户后,因此袭击者进入了这些系统前的脆弱程度。我们发现并讨论了这些袭击之前的脆弱程度。我们最后从35个用户的角度分析了这些袭击中的脆弱程度。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Fairness and Bias in Robot Learning
Arxiv
0+阅读 · 2022年7月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员