Fault attacks are active, physical attacks that an adversary can leverage to alter the control-flow of embedded devices to gain access to sensitive information or bypass protection mechanisms. Due to the severity of these attacks, manufacturers deploy hardware-based fault defenses into security-critical systems, such as secure elements. The development of these countermeasures is a challenging task due to the complex interplay of circuit components and because contemporary design automation tools tend to optimize inserted structures away, thereby defeating their purpose. Hence, it is critical that such countermeasures are rigorously verified post-synthesis. As classical functional verification techniques fall short of assessing the effectiveness of countermeasures, developers have to resort to methods capable of injecting faults in a simulation testbench or into a physical chip. However, developing test sequences to inject faults in simulation is an error-prone task and performing fault attacks on a chip requires specialized equipment and is incredibly time-consuming. To that end, this paper introduces SYNFI, a formal pre-silicon fault verification framework that operates on synthesized netlists. SYNFI can be used to analyze the general effect of faults on the input-output relationship in a circuit and its fault countermeasures, and thus enables hardware designers to assess and verify the effectiveness of embedded countermeasures in a systematic and semi-automatic way. To demonstrate that SYNFI is capable of handling unmodified, industry-grade netlists synthesized with commercial and open tools, we analyze OpenTitan, the first open-source secure element. In our analysis, we identified critical security weaknesses in the unprotected AES block, developed targeted countermeasures, reassessed their security, and contributed these countermeasures back to the OpenTitan repository.


翻译:由于这些攻击的严重性,制造商必须在安全关键系统中安装基于硬件的故障防护装置,例如安全要素。这些反措施的开发是一项具有挑战性的任务,因为电路部件的复杂相互作用,而且由于当代设计自动化工具倾向于优化插入结构,从而挫败其目的。因此,至关重要的是,这类反措施必须是经过严格核实的后合成。由于传统的功能核查技术在评估对策效力方面不足,开发者不得不采用能够在模拟测试箱或物理芯片中注入故障的方法。然而,在模拟中输入故障的测试序列是一项容易出错的任务,对芯片进行故障攻击需要专门设备,而且非常耗时。为此,本文件介绍了SYNFI,一个正式的、在开放式网络列表上运行的、正式的硅前级核查框架。SYNFI可用于分析在模拟测试测试或物理芯片时,在模拟测试中能够注入故障的方法,在模拟中输入故障的故障,在目标源码测试或物理芯片中分析其系统化的系统化反射系统化反射器。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月25日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员