We present the task description and discussion on the results of the DCASE 2022 Challenge Task 2: ``Unsupervised anomalous sound detection (ASD) for machine condition monitoring applying domain generalization techniques''. Domain shifts are a critical problem for the application of ASD systems. Because domain shifts can change the acoustic characteristics of data, a model trained in a source domain performs poorly for a target domain. In DCASE 2021 Challenge Task 2, we organized an ASD task for handling domain shifts. In this task, it was assumed that the occurrences of domain shifts are known. However, in practice, the domain of each sample may not be given, and the domain shifts can occur implicitly. In 2022 Task 2, we focus on domain generalization techniques that detects anomalies regardless of the domain shifts. Specifically, the domain of each sample is not given in the test data and only one threshold is allowed for all domains. Analysis of 81 submissions from 31 teams revealed two remarkable types of domain generalization techniques: 1) domain-mixing-based approach that obtains generalized representations and 2) domain-classification-based approach that explicitly or implicitly classifies different domains to improve detection performance for each domain.
翻译:我们介绍了关于DCASE 2022 挑战任务2的结果的任务说明和讨论:“对应用域通用技术的机器状况监测进行不受监督的异常声音探测(ASD) 2: ”在应用域通用技术的机器状态监测中,“不受监督的异常声音探测(ASD) ” 。域变换是应用ASD系统的一个关键问题。由于域变换可以改变数据的声学特性,在源域中受过训练的模型在目标域方面表现不佳。在DCASE 2021 挑战任务2中,我们安排了处理域变换的ASD任务。在这项任务中,我们假定域变换的发生是已知的。但在实践上,可能不提供每个样品的域,而域变可能暗地发生。在2022 任务2中,我们注重域变换技术,不论域变换情况如何,都发现异常现象。具体地说,每个样品的域没有在试验数据中提供,所有域只允许有一个阈值。对31个小组提交的81份资料进行分析后发现有两种引人注目的域变通用技术:1),以域变换为通用的域法和2基于域分类法的域法,明确或隐含或隐含地分类法,改进每个域的域的域的域的域变。