We study the phase synchronization problem with noisy measurements $Y=z^*z^{*H}+\sigma W\in\mathbb{C}^{n\times n}$, where $z^*$ is an $n$-dimensional complex unit-modulus vector and $W$ is a complex-valued Gaussian random matrix. It is assumed that each entry $Y_{jk}$ is observed with probability $p$. We prove that an SDP relaxation of the MLE achieves the error bound $(1+o(1))\frac{\sigma^2}{2np}$ under a normalized squared $\ell_2$ loss. This result matches the minimax lower bound of the problem, and even the leading constant is sharp. The analysis of the SDP is based on an equivalent non-convex programming whose solution can be characterized as a fixed point of the generalized power iteration lifted to a higher dimensional space. This viewpoint unifies the proofs of the statistical optimality of three different methods: MLE, SDP, and generalized power method. The technique is also applied to the analysis of the SDP for $\mathbb{Z}_2$ synchronization, and we achieve the minimax optimal error $\exp\left(-(1-o(1))\frac{np}{2\sigma^2}\right)$ with a sharp constant in the exponent.


翻译:我们用噪音测量来研究阶段同步问题, 即$Y=zz ⁇ z ⁇ H ⁇ H ⁇ gma W\gmaxw\ mathbb{C ⁇ n\time{C\n\timen} n美元, 美元是美元- 美元- 多元单位模模量矢量, 美元- 美元是一个复杂估价的高斯随机矩阵。 假设每个条目的Y ⁇ jk} 美元都以概率 $ 来观察。 我们证明, SDP对 MLE 的放松, 美元( 1+1)\ frac= gigma2\ ⁇ 2np} 下, 美元( +2+2) 美元( gma2) 美元( =2美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元, 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 的标准化方法的统计优化证据。 这个技术也用于对SDP的精确性分析。 SDP1 =xxxxxxxxxx 的精确分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员