We study the problem of minimum enclosing parallelogram with outliers, which asks to find, for a given set of $n$ planar points, a parallelogram with minimum area that encloses at least $(n-t)$ points, where the uncovered points are regarded as outliers. We present an exact algorithm with $O(k^{2}t^{4} + n^2\log n)$ runtime and $O(kt^{2})$ space, assuming that no three points lie on the same line. Here $k=k(n,t)$ denotes the number of points on the first $(t+1)$ convex layers. We further propose an sampling algorithm with runtime $O(n+\mbox{poly}(\log{n}, t, 1/\epsilon))$, which with high probability finds a parallelogram covering at least $(1-\epsilon)(n-t)$ and at most $(n-t+1)$ points with at most the exact optimal area.
翻译:我们研究了将平行图与外部线点的最小值附加在外线线下的问题, 后者要求找到一个至少包含美元( n- t) 点的最小值的平行值, 其中未发现的点被视为外部值。 我们用$O( k ⁇ 2} t ⁇ 4} + n ⁇ 2\ log n) 运行时间和 $O( kt} 2} + n ⁇ 2\ log n) 空间来提出精确的算法, 假设同一线上没有三点。 这里 $=k (n, t) 表示第一个 $( t+1) 方形层的最小值。 我们进一步建议使用运行时间 $( n ⁇ box{poly} (\ log{ } t, 1/\ epsilon) 来进行抽样算法, 极有可能找到一个至少覆盖 $(1-\ epslon) (n- t) 和最多包含 $( n- t+1) 美元( n- t+1) 的平行点, 在最合适的区域。