Patch-seq, a recently developed experimental technique, allows neuroscientists to obtain transcriptomic and electrophysiological information from the same neurons. Efficiently analyzing and visualizing such paired multivariate data in order to extract biologically meaningful interpretations has, however, remained a challenge. Here, we use sparse deep neural networks with a two-dimensional bottleneck and group lasso penalty to predict electrophysiological features from the transcriptomic ones, yielding concise and biologically interpretable two-dimensional visualizations. In two large example data sets, this visualization reveals known neural classes and their marker genes without biological prior knowledge.
翻译:Patch-seq是一种最近开发的实验技术,它使神经科学家能够从同一个神经元获得笔记本学和电生理学信息。 但是,为了提取具有生物学意义的解释,有效分析和直观地分析这种配对的多变量数据仍然是一项挑战。 在这里,我们使用带有二维瓶颈和组状胶条的稀有深神经网络从笔记本学中预测电子生理特征,产生简明和可生物解释的两维可视化。 在两个大型的数据集中,这种视觉化揭示了已知的神经类及其标志基因,而没有生物前知。