In this paper we provide an algorithm for maintaining a $(1-\epsilon)$-approximate maximum flow in a dynamic, capacitated graph undergoing edge additions. Over a sequence of $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ our algorithm runs in time $\widehat{O}(m \sqrt{n} \cdot \epsilon^{-1})$. To obtain this result we design dynamic data structures for the more general problem of detecting when the value of the minimum cost circulation in a dynamic graph undergoing edge additions obtains value at most $F$ (exactly) for a given threshold $F$. Over a sequence $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ and cost $O(\mathrm{poly}(m))$ we solve this thresholded minimum cost flow problem in $\widehat{O}(m \sqrt{n})$. Both of our algorithms succeed with high probability against an adaptive adversary. We obtain these results by dynamizing the recent interior point method used to obtain an almost linear time algorithm for minimum cost flow (Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 2022), and introducing a new dynamic data structure for maintaining minimum ratio cycles in an undirected graph that succeeds with high probability against adaptive adversaries.


翻译:在本文中, 我们提供一种算法, 用于维持$( 1-\ epsilon) 的近似最高流值。 在动态、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电动、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 、 、 电流、 电流、 电流、 电流、 电流、 、 、 电流、 、 、 、 电流、 电流、 、 电流、 电流、 电流、 电流、 电流、 电流、 、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、 电流、

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员