These lecture notes attempt a mathematical treatment of game theory akin to mathematical physics. A game instance is defined as a sequence of states of an underlying system. This viewpoint unifies classical mathematical models for 2-person and, in particular, combinatorial and zero-sum games as well as models for investing and betting. n-person games are studied with emphasis on notions of utilities, potentials and equilibria, which allows to subsume cooperative games as special cases. The represenation of a game theoretic system in a Hilbert space furthermore establishes a link to the mathematical model of quantum mechancis and general interaction systems.


翻译:这些演讲笔记试图用数学方法处理类似于数学物理学的游戏理论。 游戏实例被定义为一个基础系统的一系列状态。 这个观点统一了2人的传统数学模型, 特别是组合游戏和零和游戏以及投资和赌注模式。 以公用事业、 潜力和平衡概念为主的对人游戏的研究可以将合作游戏作为特例进行。 希尔伯特空间游戏理论系统的反射进一步建立了与量子机械化和一般互动系统的数学模型的联系。

1
下载
关闭预览

相关内容

博弈论(Game theory)有时也称为对策论,或者赛局理论,应用数学的一个分支,目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月21日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员