One-shot anonymous unselfishness in economic games is commonly explained by social preferences, which assume that people care about the monetary payoffs of others. However, during the last ten years, research has shown that different types of unselfish behaviour, including cooperation, altruism, truth-telling, altruistic punishment, and trustworthiness are in fact better explained by preferences for following one's own personal norms - internal standards about what is right or wrong in a given situation. Beyond better organising various forms of unselfish behaviour, this moral preference hypothesis has recently also been used to increase charitable donations, simply by means of interventions that make the morality of an action salient. Here we review experimental and theoretical work dedicated to this rapidly growing field of research, and in doing so we outline mathematical foundations for moral preferences that can be used in future models to better understand selfless human actions and to adjust policies accordingly. These foundations can also be used by artificial intelligence to better navigate the complex landscape of human morality.


翻译:社会偏好通常可以解释经济游戏中一发匿名无私现象,这种偏好通常由社会偏好来解释,社会偏好假定人们关心他人的金钱报酬。然而,在过去十年里,研究显示,不同类型的非自私行为,包括合作、利他主义、真相说明、利他主义惩罚和信任性,实际上,偏好遵循自己的个人规范 — — 在特定情况下什么是对什么是错的内部标准。除了更好地组织各种形式的非自私行为外,这种道德偏好假设最近还被用来增加慈善捐款,仅仅通过干预,突出行动道德。 在这里,我们回顾专门为这一迅速增长的研究领域开展的实验和理论工作,我们为此概述了可用于未来模式的道德偏好的数学基础,以便更好地理解人类的无私行为,并据此调整政策。这些基础还可以被人工智能用来更好地掌握复杂的人类道德景观。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月12日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员