The carbon pump of the world's ocean plays a vital role in the biosphere and climate of the earth, urging improved understanding of the functions and influences of the ocean for climate change analyses. State-of-the-art techniques are required to develop models that can capture the complexity of ocean currents and temperature flows. This work explores the benefits of using physics-informed neural networks (PINNs) for solving partial differential equations related to ocean modeling; such as the Burgers, wave, and advection-diffusion equations. We explore the trade-offs of using data vs. physical models in PINNs for solving partial differential equations. PINNs account for the deviation from physical laws in order to improve learning and generalization. We observed how the relative weight between the data and physical model in the loss function influence training results, where small data sets benefit more from the added physics information.
翻译:世界海洋的碳泵在地球生物圈和气候中发挥着至关重要的作用,敦促人们更好地了解海洋的功能和影响,以便进行气候变化分析。需要最先进的技术来开发能够捕捉海洋洋流和温度流复杂程度的模型。这项工作探讨了利用物理知情神经网络(PINNs)解决与海洋建模有关的部分差异方程式的好处;例如汉堡、波和蒸发方程式。我们探讨了在PINNs使用数据相对于物理模型解决部分差异方程式的权衡问题。PINNs说明了偏离物理法以改进学习和概括化。我们观察了损失函数中的数据与物理模型之间的相对权重如何影响培训结果,使小数据集更多地受益于添加的物理信息。