We study the ability of neural networks to steer or control trajectories of continuous time non-linear dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we introduce a neural-ODE control (NODEC) framework and find that it can learn control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show that NODEC produces low energy control signals. Finally, we showcase the performance and versatility of NODEC by using it to control a system of more than one thousand coupled, non-linear ODEs.
翻译:我们研究神经网络在图表上引导或控制连续时间非线性动态系统的轨迹的能力,我们用神经普通差异方程式(Neal odes)代表这种系统。为此,我们引入了神经-ODE控制框架,发现它可以学习控制信号,将图形动态系统推进到理想的目标状态。虽然我们使用不限制控制能源的损失功能,但我们的结果表明,NODEC产生低能量控制信号。最后,我们展示NODEC的性能和多功能,用它来控制一个由一千多个相配的非线性ODEs组成的系统。