The isogeometric approximation of the Stokes problem in a trimmed domain is studied. This setting is characterized by an underlying mesh unfitted with the boundary of the physical domain making the imposition of the essential boundary conditions a challenging problem. A very popular strategy is to rely on the so-called Nitsche method \cite{MR3264337}. We show that the Nitsche method lacks stability in some degenerate trimmed domain configurations, potentially polluting the computed solutions. After extending the stabilization procedure of \cite{MR4155233} to incompressible flow problems, we show that we recover the well-posedness of the formulation and, consequently, optimal a priori error estimates. Numerical experiments illustrating stability and converge rates are included.
翻译:正在研究修剪版面 Stokes 问题的等离子度近似值。 这一环境的特点是与物理域的边界格格格不入,使强加基本边界条件成为一个具有挑战性的问题。 一个非常流行的战略是依赖所谓的Nitsche 方法 \ cite{MR 3264337}。 我们显示, Nitsche 方法在一些衰减的三毛版面配置中缺乏稳定性,有可能污染计算出来的解决方案。 在将\ cite{MR4155233} 的稳定程序延伸至无法抑制的流程问题之后,我们显示,我们恢复了该配方的稳妥性,因此,最佳的先验误差估计。 包含显示稳定性和汇合率的数值实验。