Backfilling is the process of re-extracting all gallery embeddings from upgraded models in image retrieval systems. It inevitably requires a prohibitively large amount of computational cost and even entails the downtime of the service. Although backward-compatible learning sidesteps this challenge by tackling query-side representations, this leads to suboptimal solutions in principle because gallery embeddings cannot benefit from model upgrades. We address this dilemma by introducing an online backfilling algorithm, which enables us to achieve a progressive performance improvement during the backfilling process while not sacrificing the final performance of new model after the completion of backfilling. To this end, we first propose a simple distance rank merge technique for online backfilling. Then, we incorporate a reverse transformation module for more effective and efficient merging, which is further enhanced by adopting a metric-compatible contrastive learning approach. These two components help to make the distances of old and new models compatible, resulting in desirable merge results during backfilling with no extra computational overhead. Extensive experiments show the effectiveness of our framework on four standard benchmarks in various settings.
翻译:重新填充是一个从图像检索系统升级后的模型中重新提取所有画廊嵌入的过程。 它不可避免地需要巨大的计算成本, 甚至意味着服务的中断时间。 虽然后向相容学习会通过处理查询方的表述方式而使这一挑战退步, 但由于画廊嵌入无法从模型升级中受益, 从而导致原则上的解决方案不尽理想。 我们通过采用在线回填算法来解决这一难题, 这使我们能够在回填过程中逐步改进业绩,同时不牺牲新模型在完成回填后的最后性能。 为此, 我们首先提出一个简单的远程级合并技术, 用于在线回填。 然后, 我们引入了一个反向转换模块, 以便更有效和高效地合并, 通过采用一个可计量兼容的对比对比学习方法, 进一步强化了这个模块。 这两个组成部分有助于让旧模型和新模型的距离相互兼容, 从而在不增加计算间接费用的回填时取得理想的合并结果。 广泛的实验展示了我们在不同环境中的四个标准基准框架的有效性 。