Causally interpretable meta-analysis combines information from a collection of randomized controlled trials to estimate treatment effects in a target population in which experimentation may not be possible but covariate information can be collected from a simple random sample. In such analyses, a key practical challenge is systematically missing data when some baseline covariates are not collected in all trials. Here, we provide identification results for potential (counterfactual) outcome means and average treatment effects in the target population when covariate data are systematically missing from some of the trials in the meta-analysis. We propose three estimators for the average treatment effect in the target population, examine their asymptotic properties, and show that they have good finite-sample performance in simulation studies. We use the estimators to analyze data from two large lung cancer screening trials and target population data from the National Health and Nutrition Examination Survey (NHANES). To accommodate the complex survey design of the NHANES, we modify the methods to incorporate survey sampling weights and allow for clustering.
翻译:从随机控制的试验收集的资料中可以解释的元分析综合了从随机控制试验收集的资料,以估计目标人群的治疗效果,在这种试验中可能无法进行试验,但可以从简单的随机抽样中收集共变资料。在这种分析中,当没有在所有试验中收集一些基线共变数据时,一个主要的实际挑战是系统性缺乏数据。在这里,当元分析的某些试验中系统地缺乏共变数据时,我们提供潜在(反事实)结果手段的识别结果和目标人群的平均治疗效果。我们建议三个估计者来估计目标人群的平均治疗效果,检查其无症状特性,并表明他们在模拟研究中具有良好的有限抽样性能。我们利用估计者来分析两次大型肺癌筛查试验的数据以及国家健康和营养调查(NHANES)中的目标人口数据。为了适应NHAMES的复杂调查设计,我们修改了方法,以纳入调查抽样重量并允许分组。