We present an approach for computing eigenvector centrality for multilayer networks with interlayer constraints on node importance. Specifically, we consider a multilayer network defined by multiple edge-weighted, potentially directed, graphs over the same set of nodes with each graph representing one layer of the network. In this scenario, edges between layers are not allowed. As in the standard eigenvector centrality construction, the importance each node in a given layer is based on the weighted sum of the importance of adjacent nodes in that same layer. Unlike standard eigenvector centrality, we assume that the adjacency relationship and the importance of adjacent nodes may be based on distinct layers. This form of centrality constraint between the layers leads to eigenvector centrality values defined by a system of interdependent eigenvalue problems, whose solution can be efficiently realized using an interleaved power iteration algorithm.
翻译:我们提出了一个计算多层网络的树脂中间点的方法,该多层网络在节点重要性上受到跨层的制约。 具体地说, 我们考虑一个多层网络, 由多边加权的、潜在定向的、同一节点上的图和代表网络某一层的每个图解所定义的多层网络。 在这种假设中, 不允许各层之间的边缘。 正如标准的树脂中间点构造一样, 特定层中每个节点的重要性是以同一层相邻节点重要性的加权和总和为基础的。 与标准的树脂中间点中心不同, 我们假设相邻关系和相邻节点的重要性可能以不同的层为基础。 这种两层之间的中心点制约形式导致由相互依存的树脂重问题系统所定义的树脂中间点值值, 其解决办法可以通过一个相互分离的电源代算法来有效实现。