In employing spatial regression models for counts, we usually meet two issues. First, ignoring the inherent collinearity between covariates and the spatial effect would lead to causal inferences. Second, real count data usually reveal over or under-dispersion where the classical Poisson model is not appropriate to use. We propose a flexible Bayesian hierarchical modeling approach by joining non-confounding spatial methodology and a newly reconsidered dispersed count modeling from the renewal theory to control the issues. Specifically, we extend the methodology for analyzing spatial count data based on the gamma distribution assumption for waiting times. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation using the integrated nested Laplace approximation method. We also examine different popular approaches for handling spatial confounding and compare their performances in the presence of dispersion. We use the proposed methodology to analyze a clinical dataset related to stomach cancer incidence in Slovenia and perform a simulation study to understand the proposed approach's merits better.
翻译:在使用空间回归模型进行计数时,我们通常会遇到两个问题。第一,忽视共变和空间效应之间固有的共变和共变之间的内在相近性会引致因果推断。第二,真实的计数数据通常显示在古典Poisson模型不适宜使用的地方,或者显示在分散程度不足的情况下,实际的计数数据通常会显示在高或低差之间。我们建议采用灵活的贝耶斯分级模型方法,将非固定的空间方法和新重新考虑的分散计数模型结合到更新理论中,以控制问题。具体地说,我们扩大了根据等待时间的伽马分布假设分析空间计数数据的方法。这个模型可以作为潜伏高斯模型,因此,我们可以使用综合的拉比特近距离方法进行快速计算。我们还研究了处理空间混淆和比较其在分散状态下的表现的不同流行方法。我们使用拟议方法来分析斯洛文尼亚胃癌发病率的临床数据集,并进行模拟研究,以更好地了解拟议方法的可取之处。