This paper proposes a general two directional simultaneous inference (TOSI) framework for high-dimensional models with a manifest variable or latent variable structure, for example, high-dimensional mean models, high-dimensional sparse regression models, and high-dimensional latent factors models. TOSI performs simultaneous inference on a set of parameters from two directions, one to test whether the assumed zero parameters indeed are zeros and one to test whether exist zeros in the parameter set of nonzeros. As a result, we can exactly identify whether the parameters are zeros, thereby keeping the data structure fully and parsimoniously expressed. We theoretically prove that the proposed TOSI method asymptotically controls the Type I error at the prespecified significance level and that the testing power converges to one. Simulations are conducted to examine the performance of the proposed method in finite sample situations and two real datasets are analyzed. The results show that the TOSI method is more predictive and has more interpretable estimators than existing methods.
翻译:本文建议为具有明显变量或潜伏变量结构的高维模型提供一个一般的两个方向同步同时推断框架,例如,高维平均模型、高维稀小回归模型和高维潜伏因素模型。TOSI从两个方向对一组参数进行同时推断,一个测试假设的零参数是否确实为零,一个测试非零参数组中是否存在零。结果,我们可以准确地确定参数是否为零,从而保持数据结构的全面和精确的表达。我们理论上证明,拟议的TOSI方法在预定意义水平上对I型错误进行被动控制,测试力趋同于1。进行模拟是为了检查在有限抽样情况下拟议方法的性能,并分析两个真实数据集。结果显示,TOSI方法比现有方法更具有预测性,而且比现有方法更有可解释性。