We consider the problem of calibration and uncertainty analysis for activity-based transportation simulators. Activity-Based Models (ABMs) rely on statistical modeling of individual travelers' behavior to predict higher-order travel patterns in metropolitan areas. Input parameters are typically estimated from traveler surveys using maximum likelihood. We develop an approach that uses a Gaussian Process emulator to calibrate those parameters using traffic flow data. Our approach extends traditional emulators to handle the high-dimensional and non-stationary nature of transportation simulators. We introduce a deep learning dimensionality reduction model that is jointly estimated with Gaussin Process model to approximate the simulator. We demonstrate the methodology using several simulated examples as well as by calibrating key parameters of the Bloomington, Illinois model.
翻译:我们考虑了对基于活动的运输模拟器进行校准和不确定性分析的问题。基于活动的模型(ABMs)依靠个人旅行者行为的统计模型来预测大都市地区的较高秩序旅行模式。输入参数通常是通过旅行者调查尽可能地估计的。我们开发了一种方法,使用高山进程模拟器来利用交通流量数据校准这些参数。我们的方法扩大了传统模拟器,以处理运输模拟器的高维和非静止性质。我们引入了一种深度学习维度减少模型,该模型与高森进程模型共同估算,以接近模拟器。我们用几个模拟例子以及校准伊利诺伊州布鲁明顿模型的关键参数来展示这一方法。