Autoencoders allow to reconstruct a given input from a small set of parameters. However, the input size is often limited due to computational costs. We therefore propose a clustering and reassembling method for volumetric point clouds, in order to allow high resolution data as input. We furthermore present an autoencoder based on the well-known FoldingNet for volumetric point clouds and discuss how our approach can be utilized for blending between high resolution point clouds as well as for transferring a volumetric design/style onto a pointcloud while maintaining its shape.
翻译:自动编码器允许从一小套参数中重建给定输入。 但是,由于计算成本,输入大小往往有限。 因此,我们建议对量点云采用组合和重新组装方法, 以便允许高分辨率数据作为输入。 我们还根据众所周知的批量点云FoldingNet, 提出了一个自动编码器, 并讨论如何利用我们的方法在高分辨率点云之间进行混合, 以及将体量设计/风格传输到一个点上, 同时保持其形状 。