项目名称: 基于激光雷达点云数据的森林叶面积指数多角度建模及反演研究
项目编号: No.41201435
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 地理学
项目作者: 王强
作者单位: 黑龙江工程学院
项目金额: 24万元
中文摘要: 森林空间结构参数的准确反演需要更多维度的遥感信息,激光雷达(LIDAR)与多角度遥感相互协作可以提高森林叶面积指数反演精度。本项目从LIDAR点云数据构建真实森林象元场景出发,采用二维投影与栅格化方法简化点云数据,计算决定森林冠层象元双向反射分布函数(BRDF)的四分量比例、双向透射率函数和孔隙度等关键参数,避免在假设冠层结构和组分满足某种统计规律的条件下,给出上述关键参数近似解析表达式。并且修改多角度MGeoSAIL模型引入关键参数正演森林象元冠层BRDF,利用多角度CHRIS遥感数据反演LAI。基于上述研究,不仅可以加深对森林遥感机理的理解,而且为合理利用激光雷达与多角度遥感数据提供有益帮助。
中文关键词: 多角度遥感;激光雷达;叶面积指数;物理模型;森林结构参数
英文摘要: The more dimensional information of remote sensing is need to accurately inverse the forest structural parameters,LIDAR cooperates with multi-angle remote sensing can improve inversion precision of leaf area index.This project build the real forest pixel scene from LIDAR point clouds data, and simplify the point clouds data with the two-dimension projection and grid method,then calculate the four components ratio,bidirectional transmittance function,gap fraction and other key parameters,that decide the Bidirectional Reflectance Distribution Function of forest canopy.This method avoid the approximate analytical expression to calculate the key parameters,under assuming the canopy structure and component meet some statistical law.The multi-angle model MGeoSAIL was improved and introduced the key parameters to forward model BRDF,and then Leaf Area Index was inversed using remote sensing data CHRIS.The study can not only deepen the understanding of the mechanism of forest remote sensing,but also provide useful help for the rational utilization of laser radar and multi-angle remote sensing data.
英文关键词: Multi-angle remote sensing;Lidar;Leaf area index;Physical model;Forest structure parameter