Influenced mixed moving average fields are a versatile modeling class for spatio-temporal data. However, their predictive distribution is not generally accessible. Under this modeling assumption, we define a novel theory-guided machine learning approach that employs a generalized Bayesian algorithm to make predictions. We employ a Lipschitz predictor, for example, a linear model or a feed-forward neural network, and determine a randomized estimator by minimizing a novel PAC Bayesian bound for data serially correlated along a spatial and temporal dimension. Performing causal future predictions is a highlight of our methodology as its potential application to data with short and long-range dependence. We conclude by showing the performance of the learning methodology in an example with linear predictors and simulated spatio-temporal data from an STOU process.
翻译:受影响的混合移动平均字段是时空数据的多功能模型类。然而,它们的预测分布一般无法获取。在这个模型假设下,我们定义了一种新颖的理论引导机器学习方法,使用一种通用的贝叶斯算法进行预测。我们使用了一种利普施奇茨预测器,例如线性模型或饲料向神经网络,并通过尽可能减少一个新型的PAC Bayesian, 将数据与空间和时间层面连在一起,确定随机估计器。进行因果的未来预测是我们方法的突出,因为它有可能用于短期和远距离依赖性数据。我们最后用线性预测器和模拟的STOU过程的随机波段时空数据的示例展示了学习方法的绩效。